Nontunneling high-order harmonics from ultra-intense laser-driven tightly bound systems
نویسندگان
چکیده
High-order harmonic emission is investigated by numerical solution of the weakly relativistic, two-dimensional Schrödinger equation for the case of ultraintense laser-driven tightly bound systems (for example, multiply charged ions such as O7+ exposed to laser fields of the order of 1018 W cm−2 at 248 nm). In contrast to their usual substantial decrease, the low-order harmonics having an energy less than the ionization potential exhibit a highefficiency (i.e. intense) plateau with a well defined cutoff. The shape of this plateau is found to depend on the shape of the binding potential. A classical “surfing” mechanism for the generation of these harmonics is proposed that does not involve tunneling and that nevertheless explains the observed cutoff. Thus we call them “nontunneling harmonics.” The significance of relativistic effects for these harmonics is investigated and found to be small, despite the high laser intensity, because of the absence of tunneling.
منابع مشابه
Third and fifth harmonic generation by tightly focused femtosecond pulses at 2.2 μm wavelength in air.
We report experiments on the generation of third and fifth harmonics of millijoule-level, tightly focused, femtosecond laser pulses at 2.2 μm wavelength in air. The measured ratio of yields of the third and fifth harmonics in our setup is found equal to 2 · 10(-4). This result contradicts the recent suggestion that the Kerr effect in air saturates and changes sign in ultra-intense optical fields.
متن کاملUltrahigh harmonics from laser-assisted ion-atom collisions.
We present a theoretical analysis of high-order harmonic generation from ion-atom collisions in the presence of linearly polarized intense laser pulses. Photons with frequencies significantly higher than in standard atomic high-harmonic generation are emitted. These harmonics are due to two different mechanisms: (i) collisional electron capture and subsequent laser-driven transfer of an electro...
متن کاملDesigning an approprate solenoid and magnetic field for the HZDR laser-driven beamline
Nowadays, due to the high costs and large dimensions of the conventional proton accelerators, other optimal methods for producing the proton beam have been studied. Using of Laser-driven proton accelerators is one of the important and new methods. In laser-driven ion acceleration, a highly ultra-intense laser pulse interacts with solid density targets and will create a plasma media that will ac...
متن کاملInvestigation of the XUV Emission from the Interaction of Intense Femtosecond Laser Pulses with Solid Targets
The generation of coherent high-order harmonics from the interaction of ultra-intense femtosecond laser pulses with solid density plasmas holds the promise for table-top sources of intense extreme ultraviolet (XUV) and soft x-ray (SXR) radiation. Furthermore, they give rise to the prospect of combining the attosecond pulse duration of conventional gas-harmonic sources with the photon ux current...
متن کاملNarrow-bandwidth high-order harmonics driven by long-duration hot spots
We predict and investigate the emission of high-order harmonics by atoms that cross intense laser hot spots that last for a nanosecond or longer. An atom that moves through a nanometer-scale hot spot at characteristic thermal velocity can emit high-order harmonics in a similar fashion to an atom that is irradiated by a short-duration (picosecond-scale) laser pulse. We analyze the collective emi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017